QICS Paper: Detection of CO2 leakage from a simulated sub-seabed storage site using three different types of pCO2 sensors
This work is focused on results from a recent controlled sub-seabed in situ carbon dioxide (CO2) release experiment carried out during May–October 2012 in Ardmucknish Bay on the Scottish west coast. Three types of pCO2 sensors (fluorescence, NDIR and ISFET-based technologies) were used in combination with multiparameter instruments measuring oxygen, temperature, salinity and currents in the water column at the epicentre of release and further away. It was shown that distribution of seafloor CO2 emissions features high spatial and temporal heterogeneity. The highest pCO2 values (~1250 µatm) were detected at low tide around a bubble stream and within centimetres distance from the seafloor. Further up in the water column, 30-100 cm above the seabed, the gradients decreased, but continued to indicate elevated pCO2 at the epicentre of release throughout the injection campaign with the peak values between 400 and 740 µatm. High-frequency parallel measurements from two instruments placed within 1 m from each other, relocation of one of the instruments at the release site and 2D horizontal mapping of the release and control sites confirmed a localized impact from CO2 emissions. Observed effects on the water column were temporary and post-injection recovery took <7 days. A multivariate statistical approach was used to recognize the periods when the system was dominated by natural forcing with strong correlation between variation in pCO2 and O2, and when it was influenced by purposefully released CO2. Use of a hydrodynamic circulation model, calibrated with in situ data, was crucial to establishing background conditions in this complex and dynamic shallow water system. This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Dariia Atamanchuk et. al. Doi:10.1016/j.ijggc.2014.10.021.
nonGeographicDataset
http://www.sciencedirect.com/science/article/pii/S1750583614003521
description: Published as an open access journal article Doi:10.1016/j.ijggc.2014.10.021
function: download
http://www.bgs.ac.uk/ukccs/accessions/index.html#item78170
function: information
http://data.bgs.ac.uk/id/dataHolding/13606646
eng
geoscientificInformation
publication
2008-06-01
UKCCS
Carbon capture and storage
NGDC Deposited Data
revision
2022
NERC_DDC
2010-05
2014-12-10
publication
2014-12-13
notApplicable
See the journal publication for details
publication
2011
false
See the referenced specification
publication
2010-12-08
false
See http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:323:0011:0102:EN:PDF
The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.
University of Gothenburg
pointOfContact
University of Gothenburg
principalInvestigator
British Geological Survey
The Lyell Centre, Research Avenue South
EDINBURGH
EH14 4AP
United Kingdom
+44 131 667 1000
pointOfContact
2025-03-26