The amino acid composition of 20 aragonite samples precipitated in vitro in the presence and absence of amino acid (aspartic acid and glycine, separately and in combination), the dipeptide glycyl-L-aspartic acid and tetra-aspartic acid.
Amino acid compositions of aragonite samples precipitated from seawater, using a pH stat titrator using the constant composition technique between September 2021 and December 2022. Samples were precipitated from 330 mL of seawater with no biomolecules (control) or with a seawater concentration of 2 mM of aspartic acid (Asp), 2 mM glycine (Gly), 2 mM of both amino acids (Asp+Gly) or 2 mM dipeptide glycyl-L-aspartic acid (Asp-Gly) or from 33 mL of seawater with variable concentrations of aspartic acid (Asp) or tetra-aspartic acid (Asp4). Protein was extracted from the samples and run as free amino acids (to detect amino acids in free form) and as hydrolysed samples (to detect peptides). Data were collected to determine how changes in the calcification fluids of calcareous organisms affect aragonite precipitation. Data were collected by Giacomo Gardella, Sam Presslee and Nicola Allison and interpreted by Giacomo Gardella, Cristina Castillo Alvarez, Nicola Allison, Adrian Finch, Kirsty Penkman, Roland Krӧger, Sam Presslee and Matthieu Clog
nonGeographicDataset
https://webapps.bgs.ac.uk/services/ngdc/accessions/index.html#item186472
name: Data
function: download
http://data.bgs.ac.uk/id/dataHolding/13608300
eng
geoscientificInformation
publication
2008-06-01
NGDC Deposited Data
Calcification
Aragonite
Sea water
revision
2022
NERC_DDC
2021-09-01
2022-12-23
creation
2024-10-30
notApplicable
Artificial seawater was manipulated to alter pH and dissolved inorganic carbon concentration and the biomolecule, if used, was added. An aragonite seed was added as a surface for aragonite growth. A pH stat titrator monitored pH and dosed titrants (Na2CO3 and CaCl2) to replace the Ca2+ and CO32- consumed during aragonite formation. At the end, the solid was collected by filtration, rinsed with water and ethanol, dried at 40°C and stored. For amino acid analysis, samples were bleached, rinsed, demineralised and characterised by reverse phase HPLC in both free and hydrolysed form.
publication
2011
false
See the referenced specification
publication
2010-12-08
false
See http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:323:0011:0102:EN:PDF
CSV
The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.
University of St Andrews
originator
British Geological Survey
distributor
British Geological Survey
pointOfContact
British Geological Survey
Environmental Science Centre,Keyworth
NOTTINGHAM
NG12 5GG
United Kingdom
+44 115 936 3100
pointOfContact
2025-03-10