UKCCSRC Call 1 project report: Chemical looping for low cost oxygen production and other applications. Part II (restricted)
Imperial College has modelled and designed from first principles a counter-flow thermal oxygen reactor using CuO (MnO) based particles as an oxygen carrier, for replacing the burner in conventional coal fire power plant. The length of the reactor depends on the required falling distance for CuO particles to heat up and complete the decomposition. Initial calculations indicated that this was higher than hoped (500 mm). The design is being optimised. A prototype burner has been built and tested according to the design. After intense tests and some modifications on the prototype, we managed to show some encouraging results as a proof of concept. It is demonstrated that under the current design, there is strong evidence that the particles exhibited sufficiently fast kinetics to release the required oxygen to support complete combustion of propane fuel in an initially sub-stoichiometric flame. The results have led to the construction of a second version of the burner, with improved designed, and a more powerful surface mixed burner capable of much higher heat duty than the current one. The new version of the burner will be tested during the next few months. Part II of the report is restricted and not available for download.
nonGeographicDataset
http://www.bgs.ac.uk/ukccs/accessions/index.html#item44552
function: download
http://data.bgs.ac.uk/id/dataHolding/13606876
eng
geoscientificInformation
publication
2008-06-01
NGDC Deposited Data
UKCCS
revision
2022
NERC_DDC
2013-05
2016
creation
2013-05
notApplicable
UKCCSRC Call 1 project, grant number: UKCCSRC-C1-39, Lead institution: Imperial College London
publication
2011
false
See the referenced specification
publication
2010-12-08
false
See http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:323:0011:0102:EN:PDF
.docx
The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.
Imperial College London
pointOfContact
Imperial College London
principalInvestigator
Imperial College London
pointOfContact
British Geological Survey
The Lyell Centre, Research Avenue South
EDINBURGH
EH14 4AP
United Kingdom
+44 131 667 1000
pointOfContact
2025-04-06